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Abstract— A large-signal heterojunction bipolar transistor
(HBT) model has been developed which includes self-heating,
collector tranmsit-time, and RF-breakdown effects. The model
has a compact form which is based on a compromise between
accuracy and utility. As such, the model can be readily extracted
and verified with the aid of RF waveform measurements. Using
the model in simulations, it was found that RF breakdown was
dependent on base biasing and loading conditions. Therefore,
with proper circuit design, the maximum output power of the
HBT can significantly exceed the limit of open-base breakdown
voltage.

1. INTRODUCTION

ONVENTIONAL Ebers-Moll and Gummel-Poon mod-

els are not suitable for microwave power heterojunction
bipolar transistors (HBT’s) because they do not include sev-
eral important effects such as self heating, collector transit-
time, and breakdown [1]. To date, many HBT models have
included the self-heating effect [2]-[8]. A few HBT models
have also included the collector transit-time effect [9]-[11].
In comparison, reports on HBT breakdown are limited to
device physics and power performance [12], [13], but not the
incorporation of breakdown in a compact model for circuit
simulation. This is because the HBT tends to burn out under
dc breakdown characterization and the correlation between dc
and RF breakdown characteristics are not straight forward. On
separate occasions, we have treated the self-heating [14], [15].
collector transit-time [16], [17], and RF-breakdown effects
[18]. Recently, for the first time, we modeled all three effects
together [19]. This paper expands on [19] mainly by using
the model in power performance simulation and by discussing
the effect of breakdown on power performance. In the future,
the breakdown effect can become even more critical as im-
provements are made to reduce the HBT thermal resistance
and nonuniformity, so that breakdown becomes the limiting
factor for HBT power performance and reliability [20].

The present model has a compact form which is based
on a compromise between accuracy and utility. As such,
the model can be readily extracted and verified with the
aid of RF waveform measurements. The model has been
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implemented in a commercially available harmonic-balance
circuit simulator in terms of user-defined elements. This allows
the breakdown effect on HBT power performance to be
conveniently evaluated as illustrated below.

II. MODEL CONSTRUCTION

The present large-signal model is based on an equivalent
circuit (Fig. 1) similar to that of a small-signal model [21].
This facilitates the separation of linear and nonlinear model
elements. The linear elements include the intrinsic base resis-
tance (Rp2), three terminal resistances (Rp, Rg, and R¢),
and three terminal inductances (Lg, Lg, and L¢). The non-
linear elements include five diodes: Dy and Dg represent the
injection and recombination currents, respectively, through the
base-emitter junction; Dy and D¢ represent similar currents
through the base-collector junction; D x represents the leakage
current though the extrinsic base-collector junction. The I-
V' characteristics across each diode can be expressed in the
following form by adding the appropriate subscript F, F, R, C,
or X:

Ip = Is{exp(V/nVr) — 1} ¢}

where Ig is the saturation current, n is the ideality factor,
and Vp is the thermal voltage. The diode currents Ipp and
Ipg, in turn, introduce current sources I[r and Iz at the
base-collector and base-emitter junctions, respectively. These
current sources can be expressed in the following form by
adding the appropriate subscript F' or R:

I=calp @

where « is the current gain factor. Additional nonlinear
elements to account for the self-heating, collector transit-time,
and breakdown effects are discussed next.

A. Self-Heating Model

The self-heating effect is manifested mainly in the reduction
of junction turn-on voltage and collector current. To model
such an effect, temperature-dependent voltage and current
sources having the following forms are added to the base and
collector, respectively, as in the following:

AVg = —aAT (3
Alg =Ic{1 — exp(—bAT)} ¢
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Fig. 1. Large-signal HBT equivalent circmt model.

where a and b are fitting parameters; AT is the normalized
junction temperature rise for unity thermal resistance. Notice
that the location of AVp allows it to affect the turn-on voltage
of both the base-emitter and base-collector junctions. To model
the interaction between electrical and thermal effects, a thermal
equivalent circuit was added to the electrical equivalent circuit
as shown in Fig. 1. The thermal equivalent circuit consists of
a unity thermal resistance Rry = 1, a thermal capacitance
Crz which is the same as the temperature rise time 7y when
Rry = 1, and a thermal current Iz which is proportional
to the power dissipated on the HBT. As will be described
in Section III, a and b can be extracted directly from I-V
characteristics without knowing Rrg. Therefore, by using a
unity thermal resistance and a normalized temperature rise,
three instead of four parameters are required to model the
self-heating effect. Once the thermal equivalent circuit is
constructed, the instantaneous electrical current and voltage,
Ic and Vg, are used to evaluate the power dissipation
Ity - Ity causes a temperature rise of AT which is in turn
used to evalvate AVp and Al according to (3) and (4),
respectively.

B. Collector Transit-Time Model

Conventional Ebers-Moll and Gummel-Poon models use
only the base-emitter charge Qr = Ipp7r with one time
constant 7z to account for the transit-time effect under forward
operation. This is, however, not accurate for power HBT’s in
which the collector transit time 7« can be much longer than
the base transit or diffusion time [18]. To include the collector
transit-time effect, we add to the base-collector charge Qg a
second term which is proportional to 7 and critical under
forward operation also

Qr = IprTr + Ipr7C. (5)
This in turn gives rise to a transcapacitance which is a function
of Veg:

CeeBr = 0Qr/0VRE. (6)
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For the sake of utility, Q@7 and Qg are kept separate from
the conventional junction capacitances, Cgg.Cgc, and Cgx.
Thus, Cgg, Cec, and Cgx maintain their conventional form:
of an abrupt junction capacitance:

C = Cro/(1 = V/Vio)"/2 (7

Further, the intrinsic base-collector capacitance is modified so
that it decreases with increasing injection current

Cgeo = Cpe(1 - Ip/Iy). (8)

C. Breakdown Model

Under the gross assumption that the time dependence of
the avalanche breakdown process can be absorbed in the
frequency dependence of the breakdown voltage, only two
multiplication factors are required to modify the injection and
leakage currents between the base and collector

®
(10)

oy =miar
Isc =malsc
where mj; and ms depend on the open-base breakdown

voltage BV o and open-emitter breakdown voltage BVeopo
according to the following:

mi = 1/{1 — (1 — Oé)(VCB/BVCEo)"}
mo = 1/{1 - (VCB/BVCBo)n}
where 7 is another fitting parameter. Were there no distinction

between the injection and leakage currents, (11) and (12)
would have been the same because

1)
12)

BVero = BVepo(l — ap)'/M. (13)

By distinguishing the two different breakdown mechanisms
under RF conditions, we allow BV o to deviate significantly
from its dc value as has been shown in {19].

To make the model more compact, (11) and (12) can be
approximated by the following:

my = exp{(1/a — 1)(Vop/BVero)"}
mo = exp{(Vos/BVeno)}-

The above multiplication factors are applicable to conduction
currents only. From small-signal S-parameters and large-signal
waveforms measured under extreme bias conditions, the effect
of breakdown on displacement currents was found negligible.

In summary, seven special model parameters have been
introduced in the above. They include a,b, and 7rg for the
self-heating effect, 7 for the collector transit-time effect, and
BVero, BVepo, and 7 for the breakdown effect.

(14)
(15)

III. MODEL EXTRACTION

Models have been extracted from HBT’s similar to that of
[18], except that the collector doping was reduced to improve
breakdown. The emitter area remains approximately 360 ym?2.
Under a common- emitter configuration, the cut-off frequency
and the maximum frequency of oscillation were measured to
be 40 and 32 GHz, respectively. The maximum output power
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TABLE 1
LARGE-SIGNAL MODEL PARAMETERS
Linear Nonlinear Heating &
Electrical Electrical Breakdown
R; =045 Q Lip = 54x1072 Ay np= 1.2 a=047T VIW
R=11Q e = 3.0x10" A;n;=19 b=15/W
R. =072 Q Ig = I o, ng= 1.6 T =18 us
L,=0.16 nH Le=5.1x10% A; no= 2.1 BV o =16V
L,=0 I = 2x107° A; ny = e BVcpo =26V
L,=021nH o, =099 a,=0.1 M1 =635
Ry, =23Q T =0.1ps; 1,=10ps; 1, =53 ps
Cipo=040pF; Vpy =12V
CJCO = 0.23 pF; Io = 0.95 A
Cio=0.18pF; V)i =11V
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Fig. 2. Self-heating effect illustrated by collector I-17 characteristics mea-
sured under (—) dc, (W) 10 s pulse with 10% duty factor, and (A) 1 ps
pulse with 10% duty factor.

was 1 W while the maximum power-added efficiency was
56%.

The model extraction procedure is similar to that
of [18] and [21]. First, linear parameters such as
Rps,Rp, Rg, Re, L, Lg, and Lo and nonlinear parameters
such as Cpe and Cgx were extracted from bias-dependent
S-parameters, including those under an open-collector bias.
Next, the forward diode characteristics were extracted from
RF I-V waveforms while reverse diode characteristics were
extracted from dc I-V characteristics. This procedure also
yielded transit times such as 7¢,7g, and 7c.

As described in Section II, the number of self-heating
parameters were reduced to three, namely, a,b, and 7rg.
These parameters were extracted by comparing pulsed I-V
characteristics under different pulse widths and duty factors as
shown in Fig. 2. A plot of I~ as a function of pulse width
under a fixed bias gives 7rg. The slopes of dc Ic and Vg
versus power dissipation give o and b, respectively, as shown
‘in Fig. 3.

For RF-breakdown characteristics, similar to [19], a 2 GHz
signal was applied to either the base port with the HBT in
forward operation, or to the collector port with the HBT
in reverse operation. In both cases, the opposite port was
terminated either in 50 Q or a tuner. From the waveforms
measured under these extreme bias conditions, the breakdown

POWER DISSIPATION (W)

Fig. 3. Extraction of self-heating model parameters a and b from the
measured power dependence of base-emitter turn-on voltage and collector
current.

BASE VOLTAGE (V)

COLLECTOR-BASE VOLTAGE (V)

PHASE (rad)

Fig. 4. (m) Measured versus (—) simulated base-emitter and collector-base
voltage waveforms, Vopo = 8 V. Vggo = 1.3 V. Py = 21 dBm @
2 GHz.

parameters were extracted. The resulted parameter values for
the present HBT’s are BVopo = 16 V; BVgpo = 26 V;
1 = 6.5. These and other extracted parameter values are listed
in Table I

IV. SIMULATION AND DISCUSSION

The above extracted model has been implemented in a
commercially available harmonic-balance circuit simulator,
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Fig. 5. Measured dynamic (a) load and (b) drive lines at the collector and base, respectively. The measured dc I-V" and (*) breakdown characteristics are

included in (a) for comparison. Vogo = 8 V. Vgre = 1.3 V. Prn
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Fig. 6. Simulated dynamic (a) load and (b) drive lines at collector and base, respectively. The simulated dc I-V' characteristics are included in (a) for
comparison. Vepo = 8 V. Vego =13 V. Pry = 11,13..-21 dBm @ 2 GHz.

LIBRA [22], in terms of user-defined elements. This allows
the breakdown effect on HBT power performance to be
conveniently simulated and compared to the measured data.
Since the simulation involves cases in which the HBT is
severely overdriven, up to nine harmonics were used in the
harmonic-balance simulation.

Initially, for both measurement and simulation, the HBT
was operated in Class AB and driven with a 2 GHz signal.
Fig. 4 shows that the measured and simulated base and col-
lector voltage waveforms -are in agreement. Fig. 5 shows the
measured dynamic load and drive lines at the collector and
base, respectively, when the drive level was stepped from
11 to 21 dBm so that the HBT was approximately 8 dB in
compression. The measured dc collector- characteristics are
superimposed on Fig. 5(a). In comparison, the range covered
by dc characteristics is rather limited in order to avoid strong
thermal effects. Fig. 6 shows the simulated dynamic load and
drive lines as well as dc characteristics. Again the simulated
and measured characteristics are in good agreement.

Fig. 7 illustrates the agreement between the measured and
simulated output power, power-added efficiency, and harmonic
distortion. Both the measurement and simulation resulted in a
maximum output power Pg{j*% of 1.0 W which is much higher
than what is allowed by conventional wisdom. Conventionaily,

PYAX for a common-emitter HBT can be estimated according

to a simple formula:
PYot = Iuax(BVero — Vsat)/8.

Here the maximum collector current Iyjax is limited by either
the self-heating or Kirk effect. For the present HBT’s, both
effects result in an Iy ax of approximately 400 mA. Since
BVopo =16 V and Vsar = 1.6 V, this implies a maximum
output power of 0.7 W under a 40 € load. This apparent
discrepancy is because the actual RF operation is far more
complicated as discussed in the following.

According to the present model, P3IX is not necessarily
limited by open-base breakdown. For example, under a Class B
or C operation, the instantaneous collector voltage peaks when
the base-emitter junction is reverse biased. Under a Class AB
operation, even if the collector-base voltage peaks when the
base-emitter junction is conducting, the collector-base voltage
swings so rapidly that the junction capacitance presents a
low impedance at the base. This allows the collector-emitter
voltage to significantly exceed BVcgo, hence higher Py
than that predicted by (15). Fig. 4 confirms that the collector
voltage peaks at 18 V. Fig. 8 compares the simulated power
performance under common-emitter or common-base Class A,
AB and C operations. In each case the load resistance F; was
chosen to maximize the output power while the input power
was gradually increased until breakdown occurs. It can be seen

(16)
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resistance: Vpr = 1.24 V, Rg;, = 50 Q, and (—) constant current: Ig5

that, except in the case of Class A operation, the output power
continues to increase beyond 0.7 W. Such a power saturation '
behavior is different from that of a GaAs MESFET or PHEMT
which can tolerate a certain amount of breakdown current
so that additional power performance can be gained at the
expense of long-term reliability [23]. In contrast, the HBT
can tolerate little breakdown current and additional power
performance is gained from actual improvement of breakdown
voltage under different bias and drive conditions.

(a) Measured versus (b) simulated -dc breakdown characteristics when

0.5V, Ry, 65 €); (A) common-base
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the HBT is biased with a (m) constant voltage: Vg = 1.24 V, (&) shun
= 0.15 mA. :

As shown in the appendix, the dc breakdown voltage is a
function of the base external loading resistance Rpy:

BVor = BVerpo{[l — ar/(1 + Rere/Rpr)]/
(A= an)}

Thus, the breakdown voltage approaches BVspo when
Ry, = but BVeogo when Rpr 0. Typically, Rpy,
is finite and the breakdown voltage is between BVogo
and BVepo. Fig. 9 confirms that both the measured and

an
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simulated breakdown voltages vary according to the base
loading condition.

Under RF breakdown, the base load resistance is replaced
with an impedance Zp; which is a function of frequency. In
particular, Zgy can decrease with increasing frequency due to
the shunting effect of junction or parasitic capacitances even
without external base loading resistances. The decrease in Zp;,
shifts the breakdown voltage from BVggo to BVopo, the
latter being significantly higher than the former. Therefore, the
maximum output power can significantly exceed the limit of
open-base breakdown under favorable circuit design configu-
rations. The examples include: 1) common-base configuration
since BVgpo is greater than BVgo in general; 2) Class B
or C operation under which the collector voltage peaks when
the base-emitter junction is reverse biased; 3) low base loading
with constant voltage drive or a large shunt capacitance.

V. CONCLUSION

In summary, a large-signal HBT model including self-
heating, collector transit-time, and RF-breakdown effects was
developed. The model was verified through simulation and
comparison with RF waveform and power measurements. The
competing effect of open-base vs. open-emitter breakdown
was analyzed. It is shown that open-base breakdown is not
necessarily a limitation to the maximum power output and
several circuit design configurations can be utilized to increase
the output power. Such a large-signal model will be critical
when the thermal resistance and nonuniformity of power
HBT’s are reduced so that electrical breakdown becomes the
limiting factor for HBT performance and reliability.

APPENDIX

First consider dc breakdown while neglecting the para-
sitic recombination diode Dg. Under forward operation, the
collector current can be expressed as in the following:

Ic = miarlg + malsc. (A1)

When the base is loaded with a shunt resistance Rpj the

collector current equals
I¢ =1gp ~ Ip+ VBe/RBL- (A2)

Let Rppo = Vpg/Ip and eliminate I between (Al) and
(A2)

Ig ={miaplp +ma(l + Rpro/RpL)Isc}/

(1 —myar + Rego/RBL). (A3)
Thus, I approaches infinity when
mlaF:1+RBE0/RBL. (A4)

Eliminate m; between (A4) and (11), we have the correspond-
ing breakdown voltage

BVep =BVego{[l — ar/(1+ Rero/Rs1L)]/

(1= ap)p/n. (A5)
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